Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online:29
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2016  |  Volume : 2  |  Issue : 1  |  Page : 21-27

Saltgrass, a Minimum Water and Nutrient Requirement Halophytic Plant Species for Sustainable Agriculture in Desert Regions


School of Plant Sciences, College of Agriculture and Life Sciences, The University of Arizona, Tucson AZ 85721, USA

Correspondence Address:
Prof. Mohammad Pessarakli
School of Plant Sciences, The University of Arizona, Tucson, AZ 85721
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2423-7752.181803

Rights and Permissions

Context: Desertification of arable lands due to global warming and water shortage mandates use of low-quality water for irrigation. Using low-quality water imposes more stress on plants which are already under stress. Thus, there is an urgent need for finding stress tolerant plant species to survive/sustain under such stressful conditions. Since the native plants are already growing under such conditions and are adapted to these stresses, they are the most suitable candidates to be manipulated under the minimum cultural practices and minimum inputs for use under stress. If stress tolerant species/genotypes of the native plants are identified, there would be a substantial savings in cultural practices and inputs in using them. Aim: This grass has multi usages, including animal feed, soil conservation, saline soils reclamation, use in desert landscaping, and combating desertification. The objectives of this study were to find the most salinity and drought tolerant of various saltgrass genotypes for use in arid regions, where limited water supplies coupled with saline soils result in drought and salinity stresses. Materials and Methods: Various genotypes of saltgrass were studied in a greenhouse either hydroponically in culture solution for salt tolerance or in large galvanized cans contained fritted clay for drought tolerance. For the salinity stress tolerance, twelve inland saltgrass clones were studied in a greenhouse, using hydroponics technique to evaluate their growth responses under salt stress. Four salt treatments (EC 6, 20, 34, and 48 dS/m salinity stress) were replicated 3 times in a randomized complete block design experiment. Grasses were grown under these conditions for 10 weeks. During this period, shoots were clipped bi-weekly, clippings were oven dried at 75°C and dry matter (DM) weights were recorded, shoot and root lengths were also measured. At the last harvest, roots were also harvested, oven dried, and DM weights were determined. Grass quality was weekly evaluated and recorded. Although all the grasses showed a high level of salinity tolerance, there was a wide range of variations observed in salt tolerance of these saltgrass clones. For the drought tolerance study, 21 saltgrass clones were studied to evaluate their growth responses under drought stress. Plants were grown under normal condition for 6 months for complete establishment. Then, they were deprived from water for 4 months. Plant shoots were harvested weekly and oven dried at 75°C for DM weight determination. At each harvest, percentages of plant green covers were also estimated and recorded. Both the shoot dry weights and the percent of plant visual green cover decreased as drought period progressed. Results: Although all the grasses exhibited a high level of drought tolerance, there was a wide range of variations observed in various clones' responses. The superior salinity and drought stress tolerant genotypes were identified to be used for biological salinity control or reclamation of desert saline soils and combating desertification. Conclusion: My investigations at the University of Arizona on saltgrass (Distichlis spicata L.), a halophytic plant species, have indicated that this plant has an excellent drought and salinity tolerance with a great potential to be used under harsh environmental conditions.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1427    
    Printed63    
    Emailed0    
    PDF Downloaded168    
    Comments [Add]    
    Cited by others 1    

Recommend this journal