Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
  • Users Online:630
  • Home
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2016  |  Volume : 2  |  Issue : 2  |  Page : 56-65

Geochemical Background of Some Potentially Toxic and Essential Trace Elements in Soils at the Nadowli District of the Upper West Region of Ghana


Department of Earth and Environmental Sciences, Faculty of Applied Sciences, University for Development Studies, Navrongo, Ghana

Correspondence Address:
Dr. Emmanuel Arhin
Department of Earth and Environmental Sciences, Faculty of Applied Sciences, University for Development Studies, P.O. Box 24, Navrongo
Ghana
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/2423-7752.191402

Rights and Permissions

Introduction: Use of universal baseline values, such as continental crustal averages, to assess health issues from trace elements in environmental soils may be fraught with challenges because the method only considers unmineralized rocks and soils in the determination of average crustal abundances or background values. Legislated guideline values are also for specific geographic locations in the environments. None of these take into account the human activities at a particular local community as the environmental conditions have dire influence on trace element mobility, concentrations, and storage in the surface soils. Aim: The aim of this article therefore is to evaluate site-specific geochemical background concentrations of some potentially toxic trace elements in the artisanal mine area and farmland soils of Nadowli District. Materials and Methods: The method involved collection of 29 samples of trace element from soils up to the depth of 20 cm. These samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) analytical technique. Results: The results of the trace element concentrations were statistically and graphically analyzed to isolate sets of background values that are better suited locally to identify and assess areas contaminated and depleted by trace elements. Local background values of 15.00 ppm was estimated for arsenic (As), 0.02 ppm for cadmium (Cd), 0.01 ppm for mercury (Hg), 35.0 ppm for zinc (Zn), 20.0 ppm for copper (Cu), and 0.40 ppm for selenium (Se). The study found that estimated local backgrounds for essential elements were in the range of the legislated guideline values and should be used to assess the environmental quality and health as well as develop environmental policies for environmental monitoring. The potentially toxic elements contrastingly have higher local background values for As and Cd and lower local background for Hg when compared with the legislated soil guideline values. Conclusion: In conclusion, for cleanup goals in environmental legislation and for the assessment of the impacts of trace elements on health in Nadowli District, these background values should be used.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed7047    
    Printed478    
    Emailed0    
    PDF Downloaded436    
    Comments [Add]    
    Cited by others 1    

Recommend this journal